

Bilkent University
Department of Computer Engineering

CS 492
Senior Design Project

Final Report
4/20/2016

GrouPub
- A Location-Based Quiz Application –

Group Members:
Arda Ekmekçi 21101065
Ayberk Aksoy 21100623
Ekin Karayalçın 21101919
Merve Tuncel 21102000
Seren Erdoğan 21100693

Supervisor: Fazlı Can
Jury Members: Selim Aksoy, Hakan Ferhatosmanoğlu

Expert: Mehmet Çakır
Project Website: http://groupub.github.io/

1

Table of Contents
List of Figures .. 2

1. Abstract ... 3

2. Keywords (Glossary) .. 3

3. Introduction .. 4

4. Purpose of the Project .. 4

5. Final Architecture and Design ... 5

5.1. Subsystem Decomposition ... 5

5.2. Hardware/Software Mapping .. 6

5.3. Persistent Data Management .. 7

6. Final Packages ... 11

6.1. Java Packages ... 11

6.1.1. Controller .. 11

6.1.2. Model .. 12

6.1.2.1. DAO .. 12

6.1.2.2. Entity .. 12

6.1.3. Exceptions ... 13

6.2. Resource Package .. 13

6.3. Web Packages .. 13

6.3.1. Resources .. 13

6.3.2. WEB-INF .. 15

7. Final Class Diagram ... 16

8. Final Status .. 26

9. Engineering Solutions and Contemporary Issues ... 27

10. Tools and Technologies Used .. 27

11. Resource Usage ... 28

12. Similar Applications ... 28

13. The Innovation We Provide .. 30

14. Intuitive Flow of GrouPub ... 31

15. Conclusion ... 32

16. References .. 32

17. Appendix – User Manual ... 33

2

List of Figures

Figure 1 - Subsystem Decomposition.. 5

Figure 2 - Hardware/Software Mapping ... 6

Figure 3 - ER Diagram .. 7

Figure 4 - Event_Code ... 7

Figure 5 - Event_Online_User ... 8

Figure 6 - Friends... 8

Figure 7 - Friend_Requests ... 8

Figure 8 - Group_Answers .. 9

Figure 9 - Group_Flag .. 9

Figure 10 - Group_Online_Count .. 9

Figure 11 - Group_Requests ... 10

Figure 12 - Group_User_Rel .. 10

Figure 13 - Messages ... 10

Figure 14 - Quiz_Quesion_Rel ... 11

Figure 15: GrouPub MVC Structure Class Diagram ... 16

Figure 16 - Intuitive Flow of GrouPub ... 31

Figure 17 - Main page of GrouPub .. 33

Figure 18 - Registration page of GrouPub ... 33

file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935221
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935222
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935223
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935224
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935225
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935226
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935227
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935228
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935229
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935230
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935231
file:///C:/Users/user/Downloads/Final%20Report%20-%20Update%201.docx%23_Toc448935232

3

1. Abstract
GrouPub is a location-based quiz application where users compete against each other in quiz events that

are hosted in specific pubs or cafes. The need of an application like GrouPub starts with how dull one’s

life can become because of the work life/daily responsibilities and need to find a good and fun way to

spend his/her time with friends or new people he/she meets via the application. The user can download

the application from store and can easily figures how the application works. The user creates a group or

apply to an existing one and the address of the café is provided to user. When the quiz starts the user

and the users group participates in the event together. The winner team gets free drinks/rewards from

the café even tough in the end everyone wins since everyone spends quality time with their friends.

2. Keywords (Glossary)
Event: An event represents a quiz event that is taking place in a specific location (pub, café etc.). It

includes information about the quiz event including the start time and the location.

Exp: Short for experience, Exp points are given to users when they participate in quiz events and answer

a question correctly. In other words, the Exp of a user shows how many quiz events that user

participated in. We advise considering users with higher Exp for your team.

Group: A group (that is formed by a user) represents a group of maximum five users that belongs to a

specific event.

Host: Host is the location where an event will take place. A host can be a pub, a café or anywhere public

with tables and chairs where people can sit together and solve quiz questions.

Rank: All users of GrouPub are ranked based on their Exp points. The rank of a user indicates the

position of that user in the leaderboard.

Title: Depending on their Exp points, each user is given a title, starting from ‘Novice’ all the way up the

‘Legend’.

User: A user of GrouPub with a valid account.

4

3. Introduction
People spend the majority of their time in school or in workplace. Since this is the case there is a little

time left to socialize with others, finding new people to chat or spending some quality time with the

friends or colleagues. Our application, GrouPub, will help people in these manners. GrouPub enables its

user to find new friends, spend a good time with friends in various places and makes people more social

through organizing various quiz nights with diverging quiz themes in different places such as cafes and

bars.

GrouPub is a unique application since there is no application that covers the concept of chatting with

others in a specified area and creating fun quiz environments in different locations with multiple users

to compete with. The user sees the events, quiz nights, in his/her smartphone and can join to those

events with a single button click. The user also can create groups or can join existing groups and can

meet with different people easily. Since the quiz nights held in different places, the user also able to

discover new places.

The user can communicate with any people that enable group discussion for individuals in a common

location. Mobile user can turn-on and run the client application, basically. The client application gets the

physical location by QR code provided by place such as pubs, restaurants etc. When the mobile user

wants to communicate with other users, client application gets the location information and relevant

parameters from mobile device to server to register the communication that is within a valid common

area. After the communication is successfully registered, a confirmation request is sent from server back

to the mobile device [1].

It is easy to apply this application to any cafes or bars since it only requires the owner to prepare the QR

codes needed to verify the people who participates in the quiz night in that café or bar. There is a

chance to involve commerce in GrouPub since with this application the café and bars get more

customers in the quiz nights which means there can be an agreement with these places and can

schedule quiz nights in these places accordingly.

GrouPub is a social application provides user private or group conversation within a valid common area

by mobile phone users in a virtual chat room and quiz game interface. The rest of the report is organized

as follows: Section 1 clarifies the application with its constraints and professional and ethical issues

within an application. Section 2 describes the functional and non-functional requirements in software

development and finally Section 3 concludes the specifications of application.

4. Purpose of the Project
The purpose of GrouPub is to create a social environment where even strangers can form groups, share

a few drinks and socialize while trying to win a quiz event. It is an alternative activity that saves users

from their daily routine, refresh their minds, make some new friends and just have fun. Everyone needs

something to relax and socialize with other people and GrouPub provides its users an easy way to relax

and a fun night with friends or strangers.

5

5. Final Architecture and Design

5.1. Subsystem Decomposition

Figure 1 - Subsystem Decomposition

The android application has two subcomponents; the user and the admin interface. These components

are implemented using Android Studio. By using a web container, these two components will connect to

the server which is implemented in Spring MVC.

The database manager is the controller of information that is stored in our database. Some of the data’s

stored in our database are as follows (see the section Persistent Data Management for the full list); the

ID, name and location of an event, the ID’s and passwords of users, the ID’s and participants of groups

and so on.

The web service provides the connection between the application server and the database. In addition,

it provides all the core functionalities of our application like registration of users, events or locations, the

user interface of the quiz, the leaderboards, the map (to easily locate the event) and basically each page

you see in the application.

6

5.2. Hardware/Software Mapping

Figure 2 - Hardware/Software Mapping

Users will connect to the application by using an android device while the admins can connect to the

application using their PC. Both the users and the admins will use the web services to connect to the

database and insert/delete information. For the web services we use Spring MVC, RESTful Services,

JDBC, JavaScript, JQuery and JSP. The database server is using MySQL.

7

5.3. Persistent Data Management

Figure 3 - ER Diagram

The ER diagram above shows the main structure of our application. Users can form groups and can

become friends with other users. Groups can join events. A location hosts an event. An event contains a

quiz and a quiz consists of questions. All attributes of these entities are stored in our database exactly as

shown in the ER diagram.

There are additional tables in our database which are not included in the ER diagram for simplicity.

Those tables are shown separately below;

This table holds the event codes necessary to participate in an event. Each

code can only be used once by a user. When an event is created, a certain

number of codes are generated randomly. After a user uses a code, that code

will be deleted from this table. The event ID specifies which event the code

belongs to.

Figure 4 - Event_Code

8

This table shows the online users in an event. After a user successfully enters

an event using his/her event code, that user will be added to this table (by

username) with the corresponding event ID.

This table shows the friendship relations between users. After User A and

User B becomes friends, their usernames (Username_1 and Username_2)

will be recorded here.

In order to become friends with a user, a friend request must be sent first.

When User A (Username_from) sends a friend request to User B

(Username_to), this request will be recorded in this table. The reason for

having this table is to be able to show the friend request notifications to

users.

Figure 5 - Event_Online_User

Figure 6 - Friends

Figure 7 - Friend_Requests

9

When a user (Username) that belongs to a certain group (Group_ID)

answers a question, it will be stored in this table. Answer_Bool indicates

whether the answer is true or false. This table used for group point

calculations.

This table shows whether all members of a group (Group_ID) has answered

the current question or not. If the Flag is false, then some users have not

answered the current question yet. The reason for having this table to

prevent incorrect group point calculation during quizzes.

This table shows the number of online users (Online_Count) that are

present in an event in a specific group (Group_ID).

Figure 8 - Group_Answers

Figure 9 - Group_Flag

Figure 10 - Group_Online_Count

10

If a user (Username) receives an invitation to a group (Group_ID), it will be

shown here. The reason for having this table is to be able to show group

requests as notifications to our users.

This table (group user relation) shows the members (Username) of groups

(Group_ID).

This table holds the messages (Message_Text) that is sent by users

(Username) who belong to a certain group (Group_Name) during and event

(Event_ID).

Figure 11 - Group_Requests

Figure 12 - Group_User_Rel

Figure 13 - Messages

11

This table shows the questions (Question_ID) that belong to a quiz

(Quiz_ID).

6. Final Packages

6.1. Java Packages

6.1.1. Controller
This package contains the controller classes of our MVC project structure. Controllers are the RESTful

services that handles the post and get requests from the JSP pages which are the view components of

the project.

Controller

AdminController.java

EventController.java

GroupController.java

ImageController.java

LoginController.java

MainController.java

ProfileController.java

QuestionController.java

Figure 14 - Quiz_Quesion_Rel

12

6.1.2. Model

6.1.2.1. DAO
This package contains the DAO’s (Data Access Object). DAO’s are the java classes that are responsible of

fetching the desired data from the database by executing SQL queries using JDBC (Java Database

Connectivity).

dao

EventDAO.java

GroupDAO.java

ImageDAO.java

LocationDAO.java

QuestionDAO.java

UserDAO.java

6.1.2.2. Entity
This package contains the entities that are called POJO’s (Plain Old Java Object). POJO’s contain only the

attributes of the entities created in the database along with the getter and setter methods. DAO’s are

responsible of creating and filling the instances of these POJO’s.

Entity

Event.java

EventEndTimer.java

EventStartTimer.java

Group.java

Location.java

Message.java

Question.java

Quiz.java

User.java

13

6.1.3. Exceptions
This package is created in order to contain developer created exceptions.

exceptions

UserAlreadyExistException.java

GroupNameAlreadyExistsException.java

UserAlreadyExistsException.java

6.2. Resource Package
Resource package contains the XML files that hold the necessary configurations for the project. At this

very moment, our project needs only the following XML file that contains database connection

credentials.

resources

datasource.xml

log4j.xml

6.3. Web Packages
Web package contains the necessary directories that contain files for view component of the MVC

structure.

6.3.1. Resources
This package will contain the necessary resources for the web pages such as CSS, JS and image files.

14

6.3.1.1. CSS

css

changePassword.css

event.css

leaderboard.css

map.css

main.css

question.css

register.css

settings.css

users.css

6.3.1.2. Images

This directory will contain the image files and icons of our project. Initially, this directory will contain

group_default.jpg and user_default.jpg, which are the default images for users and groups. When an

image is set by a user, that image will be saved here under the format group_groupName.jpg if it is a

group image or user_Username.jpg if it’s a user image.

6.3.1.3. JS

This directory will contain the necessary JavaScript functions in order to be used in the web pages. Not

all JS files can be determined before creating all of the web pages, however the following are the

currently available ones.

js

countdown.js

jquery.js

menu.js

questionResult.js

15

6.3.2. WEB-INF
WEB-INF is a directory that contains files that are hidden to any user. The files are only available to the

controllers for the server-side tasks.

6.3.2.1. Pages

This directory contains the JSP files which are the views of the MVC structure. Those JSP files are shown

to users via the controllers’ supervision. (because of the considerable amount of .jsp files, they are

shown in a grid layout rather than a single column)

pages

aboutUs.jsp eventInAction.jsp question.jsp

admin.jsp evetnResult.jsp questionResult.jsp

aGroup.jsp groups.jsp register.jsp

allEvents.jsp leaderboard.jsp registerValidation.jsp

allGroupsInEvent.jsp login.jsp requests.jsp

changePassword.jsp logout.jsp requestsInAction.jsp

changeUsername.jsp main.jsp settings.jsp

createGroup.jsp map.jsp userProfile.jsp

error.jsp myFriends.jsp userProfileBackTo.jsp

event.jsp myGroup.jsp userProfileInAction.jsp

eventCode.jsp myProfile.jsp userSearch.jsp

16

7. Final Class Diagram
The following chart shows the relationships among classes used in GrouPub. Please note that the classes

shown in this chart are not in full detail, only their class names are shown for the sake of simplicity. The

detailed class interfaces are given after the diagram.

Figure 1155: GrouPub MVC Structure Class Diagram

17

Event

This class gets and sets information about quiz event such as address of it and when it will
start.

-int id
-Date startDate
-Date endDate
-String name
-boolean action
-boolean picture
-int locationId
-int quizId

+getId(): int
+setId(int id): void
+getStartDate(): Date
+setStartDate(Date date): void
+getEndDate(): Date
+setEndDate(Date date): void
+getName(): String
+setName(String name): void
+getLocationId(): int
+setLocationId(int locationId): void
+getQuizId(): int
+setQuizId(int quizId): void
+isPicture(): bool
+setPicture(boolean action): void
+isAction(): bool
+setAction(boolean action): void

EventEndTimer

This class is used to end the timer in quiz question page.

+Timer timer
+int eventId

+EventEntTimer(int eventId, Date date): void

EventStartTimer

This class is used to start the timer in quiz question page.

+Timer timer
+int eventId

+EventStartTimer(int eventId, Date date): void

18

Group

This class represents the groups formed by the users for quiz events.

-int id
-String name
-String admin
-int slot
-int wrongAnswers
-int correctAnswers
-boolean picture
-int eventId
-double score

+getId(): int
+setId(int id): void
+getName(): String
+setName(String name): void
+getAdmin(): String
+setAdmin(String admin): void
+getSlot(): int
+setSlot(int slot): void
+getCorrectAnswers(): int
+setCorrectAnswers(int correctAnswers): void
+getWrongAnswers(): int
+setWrongAnswers(int wrongAnswers): void
+getEventId(): int
+setEventId(int eventId): void
+isPicture(): bool
+setPicture(boolean action): void
+getScore(): double
+setScore(double score): void

Location

To keep track of the location that are registered to GrouPub, this class is used.

-int id
-String name
-String address
-boolean picture

+getId(): int
+setId(int id): void
+getName(): String
+setName(String name): void
+getAddress(): String
+setAddress(String address): void
+isPicture(): bool
+setPicture(boolean action): void

19

Message

This class represent the messages texted by users during events.

-int id
-String messageText
-int eventId
-String groupName
-String userName

+getId(): double
+setId(double id): void
+getMessageText(): String
+setMessageText(String messageText): void
+getEventId(): int
+setEventId(int eventId): void
+getGroupName(): String
+setGroupName(String groupName): void
+getUsername(): String
+setUsername(String username): void

Question

To get the question, choices and the correct answer of the question, this class is used.

-int id
-String questionText
-String answer
-String optionA
-String optionB
-String optionC
-String optionD

+getId(): int
+setId(int id): void
+getQuestionText(): String
+setQuestionText(String questionText): void
+getOptionA(): String
+setOptionA(String optionA): void
+getOptionB(): String
+setOptionB(String optionB): void
+getOptionC(): String
+setOptionC(String optionC): void
+getOptionD(): String
+setOptionD(String optionD): void

20

Quiz

An event stores a quiz which stores questions. Every quiz has its own id to identify each of
them in terms of scores.

-int id

+getId(): int
+setId(int id): void

User

This class is the generic model that are used in both server and client.

-String username
'String password
-String title
-boolean Picture
-double exp
-int correctAnswers
-int wrongAnswers

+getPassword(): String
+setPassword(String password): void
+getUsername(): String
+setUsername(String username): void
+getTitle(): String
+setTitle(String title): void
+getExp(): double
+setExp(double exp): void
+getCorrectAnswers(): int
+setCorrectAnswers(int correctAnswers): void
+getWrongAnswers(): int
+setWrongAnswers(int wrongAnswers): void
+isPicture(): bool
+setPicture(boolean action): void

AdminController

The controller class for the admin page.

+getAdminPage(int pass): String
+setEventPage(int eventId, String eventName, String startDate, String endDate, int quizId
 int locationId, Model model): String
+deleteEvent(int eventId, Model model): String

21

EventController

The controller class for the events in GrouPub.

+getEventPage(int id, boolean main, Model model, HttpSession session): String
+printEventCodePage(int eventId, boolean main, Group myGroup, String username,
 HttpSession session): String
+checkEventCode(int eventId, boolean main, Group myGroup, int code, String username,
 Model model, HttpSession session): String
+prepareEventInActionPage(int eventId, boolean main, Group myGroup Model model,
 HttpsSession session): String
+getEventInActionPage(int eventId, boolean main, Event event, ArrayList<Group>
 groupArr, ArrayList<Question> questionArr, Group myGroup
 Model model, HttpsSession session): String
+printQuestion(ArrayList<Question> questionArr, int questionNum, int questionTimeLeft,
 Model model, HttpsSession session): String
+printQuestion(String answer, myAnswer, double myTime, Group myGroup,
 Model model, HttpsSession session): String
+allGroupsInEventPage(ArrayList<Group> groupArr, int eventId, Model model,
 HttpsSession session): String
+getChatInJSON(int eventId): ArrayList<Message>
+sendChatInJSON(String msg, int eventId, Group myGroup, String username): void
-calculateGroupAnswer(int groupId): void synchronized
+forceClose(Group myGroup): void

GroupController

The controller class for the groups in GrouPub.

+getMyGroupPage(int groupId, int eventId, boolean main, Model model, HttpsSession
 session): String
+getCreateGroupPage(String groupName, int slot, int eventId, Model model, HttpsSession
 session): String
+deleteGroup(int groupId, eventId, Model model, HttpsSession session): String
+getAGroupPage(int groupId, int eventId, boolean main, Model model, HttpsSession
 session): String
+requestAGroupPage(int groupId, int eventId, boolean main, boolean request,
 HttpSession session): String
+seeGroupRequests(int groupId, int eventId, boolean main, HttpSession session): String
+seeGroupRequestsInAction(int groupId, int eventId, boolean main, HttpSession session):
 String
+evaluateGroupRequests(int groupId, int eventId, boolean accept, String username,
 Boolean main, Model model, HttpSession session): String
+evaluateGroupRequestsInAction(int groupId, boolean accept, String username, int
 eventId, boolean main, Model model, HttpSession
 session): String
+kickUser(int groupId, int eventId, String username, boolean main, Model model,
 HttpSession session): String
+getGroupsPage(int eventId, boolean main, Model model, HttpSession session): String
+getMapPage(int groupId, int eventId, boolean main, Model model, HttpSession session):

22

ImageController

The controller class for the group and user images in GrouPub.

+setProfilePicture(MultipartFile upfile, Model model, HttpSession session): String
+setGroupPicture(int groupId, int eventId, boolean main, MultipartFile upfile,
 Model model, HttpSession session): String
+removeProfilePicture(Model model, HttpSession session): String
+removeGroupPicture(int groupId, int eventId, boolean main, Model model, HttpSession
 Session): String

LoginController

This class is responsible for authentication to the application via password.

+getLoginPage(ModelMap model): String
+checkCredentials(String username, String password, ModelMap model): String
+getLogoutPage(HttpSession session): String
+getRegisterPage(): String
+addUser(String username, String password, String passwordConfirm, Model model):
String
+getAboutUsPage(): String

Main Controller

Main Controller is the class that controls every user action made after logging in.
Therefore, it is the core class that binds all other controllers to each other.

+getMainPage(Model model, HttpSession session): String
+getSettingsPage(HttpSession session): String
+getChangePasswordPage(HttpSession session): String
+setPassword(String oldPassword, String newPassword, String confirmPassword,
 Model model, HttpSession session): String
+getLeaderboardPage(Model model, HttpSession session): String
+getChangeUsernamePage(Model model, HttpSession session): String
+setUsername(String newUsername, Model model, HttpSession session): String
+getAllEventsPage(Model model, HttpSession session): String

23

Profile Controller

The controller class for the profiles of our users.

+getMyProfile(Model model, HttpSession session): String
+getUserProfileBackTo(String username, int groupId, int eventId, boolean main, int
 backTo, Model model, HttpSession session): String
+addFriendBackTo(String friendUsername, int todo, int backTo, int groupId, int eventId
 Boolean main, Model model, HttpSession session): String
+getMyFriends(Model model, HttpSession session): String
+getMyFriendsForGroup(int groupId, int eventId, boolean main, Model model,
 HttpSession session): String
+getMyFriendsToGroup(int groupId, String friendUsername, int eventId, boolean main,
 Model model, HttpSession session): String
+getUserProfile(String username, boolean backToFriends, Model model, HttpSession
 Session): String
+getUserSearch(Model model, HttpSession session): String
+addFriend(String friendUsername, int todo, Model model, HttpSession session): String
+getUserProfileInAction(String Username, int groupId, int eventId, boolean main,
 Model model, HttpSession session): String
+addFriendInAction(String friendUsername, int todo, int groupId, int eventId, boolean
 Main, Model model, HttpSession session): String

EventDAO

Data access object that provides an abstract interface to event database.

-DataSource dataSource

+setDataSource(DataSource dataSource): void
+getAllEvents(): ArrayList<Event>
+getLast3Events():ArrayList<Event>
+getEventById(int id): Event
+setEventPicture(int eventId): void
+deleteEventPicture(int eventId): void
+startEvet(int eventId): void
+endEvent(int eventId): void
+addEvent(int eventId, String eventName, String startDate, String endDate, int quizId,
 Int locationId): void
+getEventIdByCode(int code): int
+removeCode(int eventId, int code): void
+addEventOnlineUser(int eventId, String username): void
+isUserInEvent(int eventId, String username): boolean
+addCodes(int eventId, ArrayList<Integer> codeArr): void
+removeEventById(int eventId): void

24

GroupDAO

Data access object that provides an abstract interface to group database.

-DataSource dataSource

+getGroupsByEventId(int eventId): ArrayList<Group>
+getGroupByUsernameInEvent(String username, int eventId): Group
+getGroupById(int id): Group
+addGroup(String groupName, String admin, int slot, int eventId): void
+getGroupByName(String name): Group
+addUserToGroup(int groupId, String username): void
+getUsersByGroupId(int groupId): ArrayList<User>
+deleteGroupById(int groupId): void
+deleteFromGroupRequests(int groupId, String username): void
+getGroupRequests(int groupId): ArrayList<User>
+setGroupRequest(int groupId, String username): void
+isGroupRequestSent(int groupId, String username): boolean
+kickUserFromGroup(int groupId, String username): void
+setGroupPicture(int groupId): void
+deleteGroupPicture(int groupId): void
+addCorrectAnswerToGroupPool(int groupId, String username): void
+addWrongAnswerToGroupPool(int groupId, String username): void
+getAnswerSumFromGroupPool(int groupId): int
+getAnswerCountFromGroupPool(int groupId): int
+deleteGroupFromGroupPool(int groupId): void
+addCorrectAnswerToGroup(int groupId): void
+addWrongAnswerToGroup(int groupId): void
+incrementOnlineCount(int groupId): void
+decrementOnlineCount(int groupId): void
+getOnlineCount(int groupId): int
+setGroupFlag(int groupId, boolean flag): void
+getGroupFlag(int groupId): boolean
+addScore(int groupId, double score): void
+getScore(int groupId): double

ImageDAO

Data access object that provides an abstract interface to image database.

-DataSource dataSource

+setDataSource(DataSource dataSource): void
+addUserImage(byte[] imageInByte, String webappRoot, String username): void
+removeUserImage(String webappRoot, String username): void
+addGroupImage(byte[] imageInByte, String webappRoot, String groupName): void
+removeGroupImage(String webappRoot, String groupName): void

25

LocationDAO

Data access object that provides an abstract interface to location database.

-DataSource dataSource

+setDataSource(DataSource dataSource): void
+getLocationById(int id): Location
+setLocationPicture(int locationId): void
+deleteLocationPicture(int locationId): void

MessageDAO

Data access object that provides an abstract interface to message database.

-DataSource dataSource

+setDataSource(DataSource dataSource): void
+getMessagesByEventId(int eventId): ArrayList<Message>
+ addMessage(double msgId, String groupName, String userName, String msgText, int
 eventId): void

QuestionDAO

Data access object that provides an abstract interface to question database.

-DataSource dataSource

+setDataSource(DataSource dataSource): void
+findByQuestionId(int questionId): Question
+findAllQuestionsByQuizId(int quizId): ArrayList<Question>

26

UserDAO

Data access object that provides an abstract interface to user database.

-DataSource dataSource

+setDataSource(DataSource dataSource): void
+addUser(String username, String password): void
+getUser(String username): User
+setPassword(String username, String password): void
+setUsername(String oldUsername, String newUsername): void
+getAllUsers():ArrayList<User>
+isFriend(String username1, String username2): boolean
+addFriend(String username1, String username2): void
+deleteFriend(String username1, String username2): void
+addFriendRequests(String username1, String username2): void
+deleteFriendRequests(String usernameFrom, String usernameTo): void
+isFriendRequestSent(String usernameFrom, String usernameTo): boolean
+isFriendRequested(String usernameFrom, String usernameTo): boolean
+getAllFriends(String username): ArrayList<User>
+setUserPicture(String username): void
+deleteUserPicture(String username): void
+setExp(String username, double exp): void
+incrementCorrectAnswers(String username): void
+incrementWrongAnswers(String username): void

8. Final Status
Web application development is successfully completed except minor bugs. In addition to this, because

mobile application development is triggered by web-container, which is the component of a web-server

that interacts with Java servlets and responsible for mapping a URL to a particular servlet and ensuring

that the URL requester has the correct access [2], our mobile application development is also

completed.

27

9. Engineering Solutions and Contemporary Issues
GrouPub is a location-based quiz application that provides user-friendly interface to reach all kinds of

users. It enables users to improve their general knowledge via provided quiz application with variety of

question themes from geography to science. User-friendly interface aims to reach various users

regardless of their gender, age, culture and so on.

It is development language is Turkish because of the target users of the application. We aim to put it in a

market with its first version with Turkish interface because its users will be in the Turkey for now.

The authentication way of GrouPub application is approving users via their usernames and passwords.

User information is stored in private database so that it’s secure and protected in terms of user privacy.

To enter to the quiz application, user need to some information/code for authentication. We will

generate numerous unique “quiz codes” when event about to start. Each user will go into the

application via these codes, then the validity of that quiz code, which is assigned to that user, will be

removed from the quiz code table from the database. The uniqueness of the quiz code will be protected

so that no other user use that code again.

In addition, only necessity for users to have is Internet connection. Because smartphones have mobile

data and the places may provide Wi-Fi connection, it is easy to reach for the users.

10. Tools and Technologies Used
In this section, report provides detailed information about which tools and technologies we used

through the development process of GrouPub application.

Programming Languages

We used JSP (JavaServer Pages) to implement dynamic web pages. It uses Java programming language

and is based on HTML document types. JSP is used independently for the server side of the model-view-

controller design of the GrouPub application. In addition, we use Spring Framework for the Java

application.

Web Technologies: HTML, CSS used for the web development so for the view side of the model-view-

controller design.

Technologies, Libraries and Frameworks

Because we implement the application based on model-view-controller design, we used Spring MVC

and RESTful API to handle HTTP requests and responses for the client-server communication.

We used Ajax and JavaScript to send a request to a server. Ajax enables updating the page without

reloading it so it provides quick refresh for the web page.

28

IDE: IntelliJ Idea

Version Control: GitHub

It is web-based repository hosting service. We did source code management and repository checks via

GitHub.

Databases/Data storage tools: MySQL

We used MySQL as a database for our web application GrouPub. It works as cross-platform and can be

built and installed manually from source code.

Application and Web Servers: Apache Tomcat 7, Jetty 8

To deploy our final web application we used Tomcat 7 as the application server and Jetty 8 is used for

testing purposes [2].

11. Resource Usage
This part includes main web resources we used through the implementation process. While developing

web-application, we used tutorials provided in JSP tutorial resources [3]. We used HTML, CSS, JavaScript

and Ajax tools to handle http requests in terms of model-view-controller design so to implement web-

application interface with the help of tutorials provided in related resources [4]. We get the Spring MVC

Framework usage information from the resources provided in such tutorial pages [5].

After completing web-application implementation, we use web application’s URL to run the program as

mobile application. In that point, we used web-container so the related tutorials are found in oracle java

pages [6].

12. Similar Applications
There are bunch of applications that are similar to GrouPub. However, none of them is exactly the same

with GrouPub. Let us mention several most similar ones.

 QuizUp [7]

o Similarities:

 Different themes for questions

 World-wide user scores (leaderboard)

 Player to player chat engine

 Cannot be played offline (single player)

o Differences:

 QuizUp is not location-based

 QuizUp does not provide team vs team challenges

 No team chat rooms in QuizUp

 No jokers in QuizUp

29

 MoviePop [8]

o Similarities:

 World-wide user scores (leaderboard)

 Cannot be played offline (single player)

o Differences:

 MoviePop does not provide team vs team challenges

 No chat engine in MoviePop

 No rewards in MoviePop

 MoviePop has a fixed question theme

 Trivia Burst [9]

o Similarities:

 World-wide user scores (leaderboard)

 Different themes for questions

o Differences:

 Trivia Burst can be played offline (single player)

 Trivia Burst does not provide team vs team challenges

 No chat engine in Trivia Burst

 No rewards in Trivia Burst

 Quizoid [10]

o Similarities:

 Different themes for questions

 World-wide user scores (leaderboard)

o Differences:

 No chat engine in Quizoid

 No rewards in Quizoid

 Quizoid can be played offlline (single player)

 Urban Quiz [11]

o Similarities:

 Location-based

 Different themes for questions

 Cannot be played offline (single player)

o Differences:

 In Urban Quiz users creates the questions

 No rewards in Urban Quiz

30

 No chat engine in Urban Quiz

 Pub Quiz [12]

o Similarities:

 World-wide user scores (leaderboard)

 Different themes for questions

o Differences:

 Pub Quiz is not location-based

 Pub Quiz does not provide team vs team challenges

 No chat engine in Pub Quiz

 No rewards in Pub Quiz

 Pub Quiz can be played offline (single player)

13. The Innovation We Provide
As seen in section 12, most of the quiz applications currently available are not location-based. Users can

participate in quiz events from anywhere, most probably from their homes (for a typical user). This

situation (just like any other application) prevents users from going out and socialize.

We would like to change this by encouraging our users to go out, socialize, group up and participate in

quiz events together (which is why we named our application GrouPub instead of a name with the word

‘quiz’ in it). Unlike some popular application that creates addiction and traps their users at their homes,

we would like to create a nice environment where users can play GrouPub and socialize at the same

time.

31

14. Intuitive Flow of GrouPub

Figure 16 - Intuitive Flow of GrouPub

32

15. Conclusion
As the first thought of the development process, we were already close to idea of location-based

application. However, we made minor changes of the project depending on the process. As the final

form, we focused on the innovative aspects of the project such that while players are participating in a

quiz event, they need to be in same location all at once. In addition to this, we aimed to develop a

reliable application so GrouPub consistently performs according to its specifications. We wanted to

variety of users so aimed to offer user-friendly interface so that every user regardless of their age would

use it easily.

We are developing a technological and innovative software product that everyone wants to get

involved. Because it provides entertainment, knowledge and also ability of communication among its

users, our product may reach the large masses. We comprehend the importance of economic and

technological concerns in software product market so that we are able to get feedback from GrouPub

users and make some improvements in the current version of the application.

16. References
[1] Huang, Sheng Chao. Li, Ho Yin. “Location-Based Networking”. May 23, 2011

[2] https://en.wikipedia.org/wiki/Web_container

[3] http://www.tutorialspoint.com/jsp/

[4] http://www.w3schools.com/ajax/ajax_xmlhttprequest_send.asp

[5] http://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm

[6] http://docs.oracle.com/javaee/6/tutorial/doc/bnabo.html

 [7] Play.google.com, 2016. [Online]. Available:

https://play.google.com/store/apps/details?id=com.quizup.core&hl=en. [Accessed: 02- Jan- 2016].

[8] 2016. [Online]. Available:

https://play.google.com/store/apps/details?id=air.com.freshplanet.games.MoviePop. [Accessed: 02-

Jan- 2016].

[9] Play.google.com, 2016. [Online]. Available:

https://play.google.com/store/apps/details?id=com.triviaburst.e5&hl=en. [Accessed: 02- Jan- 2016].

[10] Play.google.com, 2016. [Online]. Available:

https://play.google.com/store/apps/details?id=de.habanero.quizoid&hl=en. [Accessed: 02- Jan- 2016].

https://en.wikipedia.org/wiki/Web_container
http://www.tutorialspoint.com/jsp/
http://www.w3schools.com/ajax/ajax_xmlhttprequest_send.asp
http://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
https://play.google.com/store/apps/details?id=com.quizup.core&hl=en
https://play.google.com/store/apps/details?id=air.com.freshplanet.games.MoviePop
https://play.google.com/store/apps/details?id=com.triviaburst.e5&hl=en
https://play.google.com/store/apps/details?id=de.habanero.quizoid&hl=en

33

[11] U. Quiz and T. Donder, "Urban Quiz on the App Store", App Store, 2016. [Online]. Available:

https://itunes.apple.com/us/app/urban-quiz/id306263379?mt=8. [Accessed: 02- Jan- 2016].

[12] Play.google.com, 2016. [Online]. Available:

https://play.google.com/store/apps/details?id=com.pubquiz. [Accessed: 02- Jan- 2016].

17. Appendix – User Manual
In order to get the GrouPub application, the user should enter the Android Application Store and

download the application. When download is complete the android OS should install the application

automatically. After the installation the user can enter the GrouPub main page (see Figure 17). To

register, click ‘Kayıt ol!’. You will be redirected to the registration page (see Figure 18). Just fill in the

required form and hit ‘Kayıt ol!’. Now you have successfully registered to GrouPub and can fully utilize

the application.

Figure 17 - Main page of GrouPub

Figure 18 - Registration page of GrouPub

https://itunes.apple.com/us/app/urban-quiz/id306263379?mt=8
https://play.google.com/store/apps/details?id=com.pubquiz

